Basilisk source code (http://basilisk.fr/src/)

root / src / utils.h.page

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/**
# Various utility functions

## Default parameters and variables

The default maximum timestep and CFL number. */

double DT = 1e10, CFL = 0.5;

/**
Performance statistics are stored in this structure. */

struct {
  // total number of (leaf) cells advanced for this process
  long nc;
  // total number of (leaf) cells advanced for all processes
  long tnc;
  // real time elapsed since the start
  double t;
  // average computational speed (leaves/sec)
  double speed;
  // global timer
  timer gt;
} perf;

/**
Performance statistics are gathered by this function, which is
typically called by the run() loop. */

void update_perf() {
  perf.nc += grid->n;
  perf.tnc += grid->tn;
  perf.t = timer_elapsed (perf.gt);
  perf.speed = perf.tnc/perf.t;
}

/**
## Timing

These functions can be used for profiling. */

typedef struct {
  double cpu;   // CPU time (sec)
  double real;  // Wall-clock time (sec)
  double speed; // Speed (points.steps/sec)
  double min;   // Minimum MPI time (sec)
  double avg;   // Average MPI time (sec)
  double max;   // Maximum MPI time (sec)
  size_t tnc;   // Number of grid points
  long   mem;   // Maximum resident memory (kB)
} timing;

/**
Given a timer, iteration count *i*, total number of cells *tnc* and
array of MPI timings *mpi* (with a size equal to the number of
processes), this function returns the statistics above. */

timing timer_timing (timer t, int i, size_t tnc, double * mpi)
{
  timing s;
@if _MPI
  s.avg = mpi_time - t.tm;
@endif
  clock_t end = clock();
  s.cpu = ((double) (end - t.c))/CLOCKS_PER_SEC;
  s.real = timer_elapsed (t);
  if (tnc == 0) {
    double n = 0;
    foreach(reduction(+:n)) n++;
    s.tnc = n;
    tnc = n*i;
  }
  else
    s.tnc = tnc;
@if _GNU_SOURCE
  struct rusage usage;
  getrusage (RUSAGE_SELF, &usage);
  s.mem = usage.ru_maxrss;
@else
  s.mem = 0;
@endif
@if _MPI
  if (mpi)
    MPI_Allgather (&s.avg, 1, MPI_DOUBLE, mpi, 1, MPI_DOUBLE, MPI_COMM_WORLD);
  s.max = s.min = s.avg;
  mpi_all_reduce (s.max, MPI_DOUBLE, MPI_MAX);
  mpi_all_reduce (s.min, MPI_DOUBLE, MPI_MIN);
  mpi_all_reduce (s.avg, MPI_DOUBLE, MPI_SUM);
  mpi_all_reduce (s.real, MPI_DOUBLE, MPI_SUM);
  mpi_all_reduce (s.mem, MPI_LONG, MPI_SUM);
  s.real /= npe();
  s.avg /= npe();
  s.mem /= npe();
@else
  s.min = s.max = s.avg = 0.;
@endif
  s.speed = s.real > 0. ? tnc/s.real : -1.;
  return s;
}

/**
This function writes timing statistics on standard output. */

void timer_print (timer t, int i, size_t tnc)
{
  timing s = timer_timing (t, i, tnc, NULL);
  fprintf (fout,
	   "\n# " GRIDNAME 
	   ", %d steps, %g CPU, %.4g real, %.3g points.step/s, %d var\n",
	   i, s.cpu, s.real, s.speed, (int) (datasize/sizeof(double)));
@if _MPI
  fprintf (fout,
	   "# %d procs, MPI: min %.2g (%.2g%%) "
	   "avg %.2g (%.2g%%) max %.2g (%.2g%%)\n",
	   npe(),
	   s.min, 100.*s.min/s.real,
	   s.avg, 100.*s.avg/s.real,
	   s.max, 100.*s.max/s.real);
@endif
}

/**
## Simple field statistics 

The *normf()* function returns the (volume) average, RMS norm, max
norm and volume for field *f*. */

typedef struct {
  double avg, rms, max, volume;
} norm;

norm normf (scalar f)
{
  double avg = 0., rms = 0., max = 0., volume = 0.;
  foreach(reduction(max:max) reduction(+:avg) 
	  reduction(+:rms) reduction(+:volume)) 
    if (f[] != nodata) {
      double v = fabs(f[]);
      if (v > max) max = v;
      volume += dv();
      avg    += dv()*v;
      rms    += dv()*sq(v);
    }
  norm n;
  n.avg = avg/volume;
  n.rms = sqrt(rms/volume);
  n.max = max;
  n.volume = volume;
  return n;
}

/**
The *statsf()* function returns the minimum, maximum, volume sum,
standard deviation and volume for field *f*. */

typedef struct {
  double min, max, sum, stddev, volume;
} stats;

stats statsf (scalar f)
{
  double min = 1e100, max = -1e100, sum = 0., sum2 = 0., volume = 0.;
  foreach(reduction(+:sum) reduction(+:sum2) reduction(+:volume)
	  reduction(max:max) reduction(min:min)) 
    if (f[] != nodata) {
      volume += dv();
      sum    += dv()*f[];
      sum2   += dv()*sq(f[]);
      if (f[] > max) max = f[];
      if (f[] < min) min = f[];
    }
  stats s;
  s.min = min, s.max = max, s.sum = sum, s.volume = volume;
  sum2 -= sum*sum/volume;
  s.stddev = sum2 > 0. ? sqrt(sum2/volume) : 0.;
  return s;
}

/**
## Slope limiters 

Given three values, these [slope
limiters](https://en.wikipedia.org/wiki/Flux_limiter#Limiter_functions)
return the corresponding slope-limited gradient. */

static double generic_limiter (double r, double beta)
{
  double v1 = min (r, beta), v2 = min (beta*r, 1.);
  v1 = max (0., v1);
  return max (v1, v2);
}

double minmod (double s0, double s1, double s2) {
  return generic_limiter ((s2 - s1)/(s1 - s0), 1.)*(s1 - s0);
}

double superbee (double s0, double s1, double s2) {
  return generic_limiter ((s2 - s1)/(s1 - s0), 2.)*(s1 - s0);
}

double sweby (double s0, double s1, double s2) {
  return generic_limiter ((s2 - s1)/(s1 - s0), 1.5)*(s1 - s0);
}

/**
This is the [generalised minmod
limiter](https://en.wikipedia.org/wiki/Flux_limiter#Generalised_minmod_limiter).
The $\theta$ global variable can be used to tune the limiting
($\theta=1$ gives minmod, the most dissipative limiter and $\theta=2$
gives superbee, the least dissipative). */
	  
double theta = 1.3;

double minmod2 (double s0, double s1, double s2)
{
  if (s0 < s1 && s1 < s2) {
    double d1 = theta*(s1 - s0), d2 = (s2 - s0)/2., d3 = theta*(s2 - s1);
    if (d2 < d1) d1 = d2;
    return min(d1, d3);
  }
  if (s0 > s1 && s1 > s2) {
    double d1 = theta*(s1 - s0), d2 = (s2 - s0)/2., d3 = theta*(s2 - s1);
    if (d2 > d1) d1 = d2;
    return max(d1, d3);
  }
  return 0.;
}

/**
Given a list of scalar fields *f*, this function fills the gradient
fields *g* with the corresponding gradients. If the *gradient*
attribute of a field is set (typically to one of the limiting
functions above), it is used to compute the gradient, otherwise simple
centered differencing is used. */
	  
void gradients (scalar * f, vector * g)
{
  assert (list_len(f) == vectors_len(g));
  foreach() {
    scalar s; vector v;
    for (s,v in f,g) {
      if (s.gradient)
	foreach_dimension()
	  v.x[] = s.gradient (s[-1], s[], s[1])/Delta;
      else // centered
	foreach_dimension()
	  v.x[] = (s[1] - s[-1])/(2.*Delta);
    }
  }
  boundary ((scalar *) g);
}

/**
## Other functions

Given a velocity field $\mathbf{u}$, this function fills a scalar
field $\omega$ with the vorticity field
$$
\omega = \partial_x u_y - \partial_y u_x
$$ */

void vorticity (const vector u, scalar omega)
{
  #if dimension > 1
    foreach()
      omega[] = (u.y[1,0] - u.y[-1,0] + u.x[0,-1] - u.x[0,1])/(2.*Delta);
    boundary ({omega});
  #endif
}

/**
Given two scalar fields *v* and *vn* this function returns the maximum
of their absolute difference. */

double change (scalar v, scalar vn)
{
  double max = 0.;
  foreach(reduction(max:max)) {
    double dv = fabs (v[] - vn[]);
    if (dv > max)
      max = dv;
    vn[] = v[];
  }
  return max;
}

#include "output.h"